

Aptima™ SARS-CoV-2 Assay (Panther™ System)

In-vitro-Diagnostikum.

Nur für den US-Export.

INHALT

Allgemeine Informationen	2
Verwendungszweck	2
Zusammenfassung und Testerklärung	3
Testprinzip	3
Warnhinweise und Vorsichtsmaßnahmen	4
Lagerungs- und Handhabungsbedingungen für Reagenzien	6
Probenentnahme und -lagerung	7
Transport von Patientenproben	11
Poolen von Patientenproben – Festlegung einer geeigneten Strategie für Implementierung und Überwachung	11
Vorbereiten der Proben für das Poolen	11
Panther System	
Im Lieferumfang enthaltene Reagenzien und Materialien	. 13
Erforderliche und nicht im Lieferumfang enthaltene Materialien	. 14
Testverfahren mit dem Panther System	. 15
Verfahrenshinweise	. 19
Qualitätskontrolle	. 20
Interpretation der Ergebnisse	. 21
Einschränkungen	
Panther SARS-CoV-2 Assay-Leistung	. 23
Bibliographie	

Allgemeine Informationen

Verwendungszweck

Der Aptima™ SARS-CoV-2 Assay ist ein Nukleinsäure-Amplifikationstest als *in-vitro*-Diagnostikum für den qualitativen Nachweis der RNA von SARS-CoV-2, isoliert und gereinigt aus nasopharyngealen (NP), nasalen, oropharyngealen (OP) Abstrichproben, Abstrichproben aus der mittleren Nasenmuschel, nasopharyngealer Spüllösung/nasopharyngealem Aspirat, nasalem Aspirat oder Speichel, entnommen von Personen, die klinische und/oder epidemiologische COVID-19-Kriterien erfüllen, einschließlich Personen ohne Symptome oder mit begründetem Verdacht auf eine Infektion mit COVID-19.

Dieser Test dient außerdem dem gualitativen Nachweis von Nukleinsäure aus SARS-CoV-2 in gemischten Proben, bestehend aus Abstrichproben von bis zu 5 Einzelpersonen aus den oberen Atemwegen (d. h. nasopharyngeale, nasale oder oropharyngeale Tupfer oder Tupfer aus der mittleren Nasenmuschel). Dabei wird jede Patientenprobe unter der Aufsicht eines Gesundheitsdienstleisters oder von einem Gesundheitsdienstleister selbst unter Verwendung einzelner Fläschchen mit Transportmedium entnommen. Negativ Ergebnisse aus gemischten Testungen sollten nicht als endgültig gehandhabt werden. Wenn die klinischen Anzeichen und Symptome eines Patienten nicht mit einem negativen Ergebnis übereinstimmen und wenn Ergebnisse für die Patientenversorgung erforderlich sind, sollte eine Einzeltestung für den Patienten in Betracht gezogen werden. Patientenproben, die in Pools mit einem positiven oder ungültigen Ergebnis enthalten sind, müssen einzeln getestet werden, bevor ein Ergebnis gemeldet wird. Patientenproben mit niedriger Viruslast können aufgrund der niedrigeren Sensitivität bei gemischten Testungen nicht in Proben-Pools nachgewiesen werden. Bei bestimmten Patienten, deren Probe(n) einem Poolen unterzogen wurden, muss bei der Meldung des Ergebnisses an den Gesundheitsdienstleister ein Hinweis hinzugefügt werden, dass während der Testung Poolen verwendet wurde.

Die Ergebnisse dienen der Identifikation der SARS-CoV-2-RNA. Die SARS-CoV-2-RNA lässt sich während der akuten Phase der Infektion gewöhnlich in Proben aus den oberen Atemwegen nachweisen. Positive Ergebnisse weisen auf das Vorhandensein von SARS-CoV-2 RNA hin. Für die Bestimmung des Infektionsstatus des Patienten sind eine klinische Korrelation mit der Krankengeschichte des Patienten sowie andere diagnostische Informationen erforderlich. Positive Ergebnisse schließen eine bakterielle Infektion oder Co-Infektion mit anderen Viren nicht aus.

Negative Ergebnisse schließen eine SARS-CoV-2-Infektion nicht aus und dürfen nicht als alleinige Grundlage für Entscheidungen zur Patientenversorgung dienen. Negative Ergebnisse müssen mit klinischen Beobachtungen, der Krankengeschichte des Patienten und epidemiologischen Informationen zusammenfallen.

Der Aptima SARS-CoV-2 Assay auf dem Panther™ und Panther Fusion™ System ist für die Verwendung durch Laborpersonal bestimmt, das spezifisch für die Bedienung des Panther und Panther Fusion Systems und in-vitro-Diagnoseverfahren angewiesen und geschult ist

Zusammenfassung und Testerklärung

Coronaviren sind eine große Familie von Viren, die Erkrankungen bei Tieren oder Menschen verursachen können. Einige Coronaviren sind dafür bekannt, Atemwegsinfektionen beim Menschen zu verursachen, die von einer gewöhnlichen Erkältung bis hin zu schwerwiegenderen Erkrankungen, wie dem Middle East Respiratory Syndrome (MERS) und Severe Acute Respiratory Syndrome (SARS), reichen. Das zuletzt entdeckte Coronavirus, SARS-CoV-2, verursacht die assoziierte Coronavirus-Erkrankung COVID-19. Dieses neue Virus und die Erkrankung waren bis vor Beginn des Ausbruchs in Wuhan, China, im Dezember 2019 unbekannt.¹

Die häufigsten Symptome von COVID-19 sind Fieber, Müdigkeit und trockener Husten. Bei manchen Patienten treten ggf. Schmerzen, eine verstopfte Nase, laufende Nase, Halsschmerzen, ein neuartiger Geschmacks- oder Geruchsverlust oder Durchfall auf. Diese Symptome sind in der Regel mild und beginnen schrittweise. Einige Personen infizieren sich, entwickeln jedoch keine Symptome und fühlen sich nicht unwohl. Die Erkrankung kann sich über Tröpfchen aus den Atemwegen verbreiten, die entstehen, wenn eine infizierte Person hustet oder nießt. Diese Tröpfchen können in Mund oder Nase von umstehenden Personen landen oder möglicherweise in die Lunge eingeatmet werden.² Diese Tröpfchen können auch auf Gegenständen und Oberflächen im direkten Umfeld der Person landen. Andere Personen können sich mit SARS-CoV-2 infizieren, indem sie diese Gegenstände oder Oberflächen und anschließend ihre Augen, Nase oder ihren Mund berühren.

Das Virus, das COVID-19 verursacht, infiziert Menschen und kann leicht von einem Menschen auf einen anderen Menschen übertragen werden.³ Am 11. März 2020 wurde der Ausbruch von COVID-19 von der Weltgesundheitsorganisation (WHO) als Pandemie eingestuft.^{4,5}

Testprinzip

Der Aptima SARS-CoV-2 Assay vereint die Technologien von Target Capture, Transkriptionsvermittelter Amplifikation (TMA) und Dual Kinetic Assay (DKA).

Die Proben werden in ihren jeweiligen Probentransportröhrchen gesammelt. Die Transportlösungen in diesen Reaktionsröhrchen setzen die RNA-Targets frei und schützen sie vor Abbau während der Lagerung. Bei der Durchführung des Aptima SARS-CoV-2 Assays im Labor werden die Target-RNA-Moleküle durch Verwendung von Fänger-Oligomeren mittels Target Capture mit magnetischen Mikropartikeln von den Patientenproben isoliert. Die Fänger-Oligomere enthalten Sequenzen, die zu spezifischen Bereichen der Targetmoleküle komplementär sind, sowie Desoxyadenosinreste. Für jedes Target wird ein separates Fänger-Oligomer verwendet. Während des Hybridisierungsschritts binden sich die sequenzspezifischen Regionen der Fänger-Oligomere an spezifische Regionen der Targetmoleküle. Die Isolierung des Fänger-Oligomer/Target-Komplexes aus der Lösung erfolgt dann durch Absenkung der Reaktionstemperatur auf Raumtemperatur. Diese Temperatursenkung ermöglicht die Hybridisierung der Desoxyadenosinregion auf dem Fänger-Oligomer mit den Polydesoxythymidin-Molekülen, die kovalent an die Magnetpartikel gebunden sind. Diese Mikropartikel, einschließlich die an sie gebundenen Targetmoleküle, werden mit Hilfe von Magneten zur Seite des Reaktionsgefäßes gezogen und der Überstand wird aspiriert. Die Partikel werden gewaschen, um Restprobenmatrix zu entfernen, die Amplifikationsreaktionshemmer enthalten kann. Nach Abschluss der Target-Capture-Schritte sind die Proben zur Amplifikation bereit.

Targetamplifikationsassays basieren auf der Fähigkeit, komplementäre Oligonukleotid-Primer spezifisch reassoziieren zu lassen (Annealing) und eine enzymatische Amplifikation der Target-Nukleinsäurestränge zu ermöglichen. Der Aptima SARS-CoV-2 Assay bildet spezifische Regionen

der RNA des SARS-CoV-2-Virus nach. Die Detektion der RNA-Amplifikationsproduktsequenzen (Amplikon) wird durch Nukleinsäurehybridisierung erbracht. Chemilumineszente Einzelstrang-Nukleinsäuresonden, die einzigartig und komplementär zu einer Region jedes Target-Amplikons und jedes internen Kontrollamplikons (IC) sind, werden mit verschiedenen Acridiniumestermolekülen (AE) markiert. Die mit AE markierten Sonden vereinigen sich mit Amplikon und bilden stabile Hybride. Das Selektionsreagenz differenziert die hybridisierte von der nicht hybridisierten Sonde und eliminiert somit die Erzeugung eines Messsignals von einer nicht hybridisierten Sonde. Während des Detektionsschritts wird Licht, das von den markierten Hybriden emittiert wird, als Photonensignale in einem Luminometer gemessen und als Relative Lichteinheiten (Relative Light Units, RLU) berichtet. Beim DKA können Signale anhand der unterschiedlichen Kinetikprofile der markierten Sonden unterschieden werden. Kinetikprofile werden aus den Messwerten für die Photonenabgabe während der Detektionslesezeit abgeleitet. Die chemilumineszierende Nachweisreaktion für das IC-Signal hat eine sehr schnelle Kinetik und ist vom "Flasher"-Kinetiktyp. Die chemilumineszierende Nachweisreaktion für das SARS-CoV-2-Signal ist relativ langsamer und ist vom "Glower"-Kinetiktyp. Die Testergebnisse werden nach einem Grenzwert auf der Grundlage der Gesamtanzahl der RLU und des kinetischen Kurventyps ermittelt.

Der Aptima SARS-CoV-2 Assay amplifiziert und weist unter Verwendung desselben "Glower"-Kinetiktyps zwei konservierte Regionen des ORF1ab-Gens in derselben Reaktion nach. Die beiden Regionen werden nicht unterschieden und die Amplifikation einer oder beider Regionen führt zu einem RLU-Signal. Die Testergebnisse werden nach einem Grenzwert auf der Grundlage der Gesamtanzahl der RLU und des kinetischen Kurventyps ermittelt.

Warnhinweise und Vorsichtsmaßnahmen

- A. *In-vitro-*Diagnostikum. Lesen Sie diese Packungsbeilage und die *Bedienungsanleitung für das Panther/Panther Fusion System sorgfältig und vollständig durch*.
- B. Diese Verfahren sollten nur von Personen durchgeführt werden, die in der Anwendung dieses Assays und in der Handhabung potenziell infektiösen Materials entsprechend geschult sind. Bei Materialverschüttung sind die betroffenen Flächen unter Einhaltung entsprechender vor Ort gültiger Verfahren sofort zu desinfizieren.
- C. Alle Patientenproben sind gemäß der Laborpraxis sowie den Verfahren, welche die Grundlage der guten mikrobiologischen Praxis und Verfahren (GMPP) bilden, als infektiös zu handhaben und zu verarbeiten. Siehe "WHO Laboratory biosafety guidance related to coronavirus disease (COVID-19)" (WHO Leitfaden zur Biosicherheit in Laboren in Bezug auf die Coronavirus-Krankheit [COVID-19]): vorläufiger Leitfaden. https://www.who.int/publications/i/item/laboratory-biosafety-guidance-related-to-coronavirus-disease-(covid-19).
- D. Patientenproben können infektiös sein. Bei der Durchführung dieses Assays sind die allgemein gültigen Vorsichtsmaßnahmen zu befolgen. Der Laborleiter muss die richtigen Handhabungs- und Entsorgungsverfahren festlegen. Es darf nur dem Personal, das in der Handhabung von infektiösen Materialien geschult wurde, gestattet werden, dieses Diagnoseverfahren auszuführen.⁶
- E. Im Falle eines bestehenden Verdachts auf eine Infektion mit SARS-CoV-2 auf Basis aktueller klinischer Screening-Kriterien, die von Gesundheitsbehörden empfohlen werden, sollten die Patientenproben unter angemessenen Vorsichtsmaßnahmen zur Infektionskontrolle entnommen werden.

- F. Nur die im Lieferumfang enthaltenen oder angegebenen Einweg-Laborprodukte verwenden.
- G. Verwenden Sie angemessene persönliche Schutzausrüstung bei der Entnahme und Handhabung von Patientenproben von Personen, bei denen der Verdacht einer SARS-CoV-2-Infektion besteht, wie in den Interim Laboratory Biosafety Guidelines for Handling and Processing Specimens Associated with 2019 Novel Coronavirus (2019-nCoV) des CDC beschrieben.
- H. Beim Umgang mit Proben und Reagenzien ungepuderte Einweghandschuhe, Augenschutz und Laborkittel tragen. Nach dem Umgang mit Proben und Reagenzien die Hände gründlich waschen.
- I. Sämtliches Material, das mit den Proben und Reagenzien in Kontakt gekommen ist, gemäß den geltenden regionalen, nationalen und internationalen Vorschriften entsorgen.
- J. Die Verfallsdaten auf den Panther Fusion Probenlyseröhrchen, Hologic Probenlyseröhrchen, dem Aptima Multitest-Probenentnahmekit, dem Aptima Unisex-Tupfer-Probenentnahmekit, dem Aptima Probentransferkit und dem Hologic Direct Load Capture Cap-Entnahmekit beziehen sich auf das Umfüllen der Probe in das Röhrchen und nicht auf das Testen der Probe. Die zu irgendeinem Zeitpunkt vor diesen Verfallsdaten entnommenen/transferierten Proben sind selbst dann für Tests gültig, wenn diese Verfallsdaten abgelaufen sind, vorausgesetzt die Proben wurden gemäß der entsprechenden Packungsbeilage transportiert oder gelagert.
- K. Um die Probenintegrität zu wahren, müssen während des Probenversands die ordnungsgemäßen Lagerungsbedingungen aufrechterhalten werden. Die Probenstabilität unter anderen Versandbedingungen als den hier empfohlenen wurde nicht untersucht.
- L. Das Testen einer Speichelprobe, die außerhalb der spezifizierten Bedingungen gelagert wurde, kann zu einem höheren Risiko eines ungültigen Ergebnisses führen.
- M. Kreuzkontamination während der Probenhandhabungsschritte vermeiden. Die Proben können sehr hohe Konzentrationen von Viren oder anderen Organismen aufweisen. Es ist sicherzustellen, dass die Probenbehälter nicht miteinander in Berührung kommen. Benutzte Materialien dürfen nicht über offene Behälter hinweg entsorgt werden. Wechseln Sie die Handschuhe, wenn diese mit Proben in Kontakt kommen.
- N. Reagenzien und Kontrollen nach Ablauf des Verfallsdatums nicht mehr verwenden.
- O. Die Assay-Bestandteile unter den empfohlenen Lagerungsbedingungen aufbewahren. Weitere Informationen finden Sie unter *Anforderungen an die Lagerung und Handhabung von Reagenzien* (Seite 6) und *Testverfahren mit dem Panther System* (Seite 15).
- P. Assayreagenzien oder Flüssigkeiten nicht miteinander kombinieren. Füllen Sie Reagenzien oder Flüssigkeiten nicht nach; das Panther System überprüft die Reagenzien-Füllstände.
- Q. Eine Kontamination der Reagenzien mit Mikroben und Ribonuklease vermeiden.
- R. Verwenden Sie kein Material auf dem Gerät, das Guanidinthiocyanat oder guanidinhaltige Materialien enthält. Hoch reaktive und/oder toxische Verbindungen können sich in Verbindung mit Natriumhypochlorit bilden.
- S. Ein Reagenz in diesem Kit ist mit Gefahren- und Sicherheitssymbolen gekennzeichnet.

Hinweis: Die Vermittlung von Gefahren entspricht den Sicherheitsdatenblättern (SDB) der EU. Spezifische Informationen zu den Gefahren für Ihre Region finden Sie in dem regionalspezifischen SDS in der Sicherheitsdatenblatt-Sammlung (Safety Data Sheet Library) unter www.hologicsds.com.

Selektionsreagenz BORSÄURE 1 - 5 % ACHTUNG

H315 - Verursacht Hautreizungen

Target-Capture-Reagenz

EDTA 1 - 5 %

LITHIUMHYDROXID, MONOHYDRAT 1 - 5 %

H412 - Schädlich für Wasserorganismen, mit langfristiger Wirkung

H402 - Schädlich für Wasserorganismen

Lagerungs- und Handhabungsbedingungen für Reagenzien

A. Die folgenden Reagenzien sind stabil bei Lagerung im Bereich von 2 °C bis 8 °C (gekühlt):

Aptima SARS-CoV-2 Amplifikationsreagenz

Aptima SARS-CoV-2 Enzymreagenz

Aptima SARS-CoV-2 Sondenreagenz

Aptima SARS-CoV-2 Interne Kontrolle

Aptima SARS-CoV-2 Positivkontrolle

Aptima SARS-CoV-2 Negativkontrolle

B. Die folgenden Reagenzien sind stabil bei Lagerung im Bereich von 2 °C bis 30 °C:

Aptima SARS-CoV-2 Amplifikationsrekonstitution

Aptima SARS-CoV-2 Lösung zur Enzymrekonstitution

Aptima SARS-CoV-2 Rekonstitutionslösung für Sondenreagenz

Aptima SARS-CoV-2 Selektionsreagenz

C. Die folgenden Reagenzien sind stabil bei Lagerung im Bereich von 15 °C bis 30 °C (Raumtemperatur):

Aptima SARS-CoV-2 Target-Capture-Reagenz

Aptima-Waschlösung

Aptima-Puffer für Deaktivierungsflüssigkeit

Aptima-Ölreagenz

- D. Target-Capture-Arbeitsreagenz (wTCR) ist 30 Tage lang stabil, wenn es bei 15 °C bis 30 °C gelagert wird. Nicht gekühlt lagern.
- E. Nach der Rekonstitution sind das Enzymreagenz, Amplifikationsreagenz und das Sondenreagenz stabil für 30 Tage bei Lagerung im Temperaturbereich von 2 °C bis 8 °C.
- F. Alle unbenutzten rekonstituierten Reagenzien und das wTCR nach 30 Tagen oder nach Ablauf des Verfallsdatums der Hauptcharge (das frühere Datum ist ausschlaggebend) entsorgen.
- G. Kontrollen sind bis zum auf dem jeweiligen Fläschchen angegebenen Datum stabil.

- H. Im Panther System aufbewahrte Reagenzien sind im Gerät 120 Stunden stabil.
- I. Das Sondenreagenz und das rekonstituierte Sondenreagenz sind lichtempfindlich. Die Reagenzien sind vor Licht geschützt zu lagern. Die angegebene rekonstituierte Stabilität basiert auf einer 12-stündigen Aussetzung des rekonstituierten Sondenreagenzes gegenüber zwei 60-Watt-Leuchtstoffbirnen, im Abstand von ca. 43 cm und einer Temperatur unter 30 °C. Die Aussetzung des rekonstituierten Sondenreagenzes gegenüber Lichteinfall sollte entsprechend begrenzt werden.
- J. Nach Erwärmung auf Raumtemperatur können manche Kontrollröhrchen eine Trübung aufweisen oder Präzipitate enthalten. Trübung oder Präzipitate in Verbindung mit Kontrollen haben keine Auswirkung auf die Leistung der Kontrollen. Die Kontrollen können sowohl klar als auch getrübt/mit Präzipitaten verwendet werden. Wenn klare Kontrollen gewünscht werden, kann die Solubilisierung beschleunigt werden, indem sie im oberen Raumtemperaturbereich (15 °C bis 30 °C) inkubiert werden.
- K. Die Reagenzien nicht einfrieren.

Probenentnahme und -lagerung

Patientenproben - Vom Patienten entnommenes klinisches Material, das in ein passendes Transportsystem gefüllt wird. Für den Aptima SARS-CoV-2 Assay umfasst dies NP-, nasale und OP-Abstrichproben sowie Abstrichproben aus der mittleren Nasenmuschel oder Probennahmen aus nasopharyngealer Spüllösung/nasopharyngealem Aspirat und nasalem Aspirat in Virus-Transportmedium (VTM/UTM), Kochsalzlösung, flüssigem Amies-Transportmedium oder Probentransportmedium (STM). Zusätzlich kann Speichel für die Verwendung mit dem Assay gesammelt werden.

Proben - Ein allgemeinerer Begriff zur Beschreibung von Material zur Testung auf dem Panther System, einschließlich Patientenproben, die in ein Panther Fusion Probenlyseröhrchen, Hologic Probenlyseröhrchen mit undurchlässiger Kappe, Aptima Probentransferröhrchen, Aptima Multitest-Transportröhrchen, Hologic Direct Load Capture Cap-Röhrchen und Kontrollen umgefüllt wurden.

Hinweis: Alle Patientenproben sind als potenziell infektiös zu handhaben. Es sind allgemeine Vorsichtsmaßnahmen zu treffen.

Hinweis: Achten Sie bei den Schritten, die eine Handhabung von Proben erfordern, darauf, eine Kreuzkontamination zu vermeiden. Benutztes Material ist beispielsweise so zu entsorgen, dass es nicht über geöffnete Röhrchen geführt wird.

Abstrichprobenentnahme

NP-Abstrichproben, nasale Abstrichproben und OP-Abstrichproben entsprechend der Standardtechnik mit einem Polyester-, Viskose- oder Nylon-bestückten Tupfer entnehmen. Die Tupferprobe umgehend in 3 ml des VTM oder UTM geben. Abstrichproben können alternativ zu Kochsalzlösung, flüssigem Amies-Transportmedium oder STM hinzugefügt werden. Das Aptima Multitest-Tupfer-Probenentnahmekit und das Hologic Direct Load Capture Cap-Entnahmekit können für die Entnahme von OP- und nasalen Tupferproben verwendet werden. Das Hologic Direct Load Capture Cap-Entnahmekit – CLASSIQSwab ist für die Entnahme von OP- und nasalen Abstrichproben vorgesehen. Das Hologic Direct Load Capture Cap-Entnahmekit – FLOQSwab ist für die Entnahme von Proben aus der mittleren Nasenmuschel und NP-Abstrichproben vorgesehen.

Nach der Entnahme können in VTM/UTM entnommene Patientenproben für bis 96 Stunden bei 2 °C bis 8 °C gelagert werden, bevor sie in das Probenlyseröhrchen oder Transferröhrchen umgefüllt werden, wie unten im Abschnitt "Probenbearbeitung" beschrieben. Verbleibende Probenvolumina können bei ≤-70 °C gelagert werden.

Nach der Entnehme können Patientenproben im Aptima Multitest-Röhrchen und im Hologic Direct Load Capture Cap-Röhrchen bei 2 °C bis 30 °C für bis zu 6 Tage gelagert werden.

Hinweis: Es wird empfohlen, dass Patientenproben, die in das Aptima Multitest-Röhrchen und das Hologic Direct Load Capture Cap-Röhrchen entnommen werden, verschlossen und aufrecht in einem Ständer stehend gelagert werden.

Probenentnahme aus nasopharyngealer Spüllösung/nasopharyngealem Aspirat und nasalem Aspirat

Patientenproben aus nasopharyngealer Spüllösung/nasopharyngealem Aspirat und nasalem Aspirat entsprechend den Standardtechniken entnehmen.

Entnahme von Speichelproben

Entnehmen Sie 1 ml +/- 0,2 ml Speichel in ein Standardentnahmeröhrchen mit einer 1-ml-Markierung. Weisen Sie den Patienten an, Speichel zu produzieren, den Speichel mindestens 30 Sekunden lang im Mund hin und her zu bewegen und anschließend in das Entnahmeröhrchen zu spucken. Entnommener Speichel kann bei 15 °C bis 30 °C für bis zu 12 Stunden gelagert werden, bevor 4 ml +/- 0,4 ml Minimum Essential Medium (MEM) zum Verdünnen und Mischen der Speichelprobe hinzugefügt werden. In MEM verdünnte Proben können bei 15 °C bis 30 °C für bis zu 2 Stunden gelagert werden, bevor 500 µl des verdünnten Speichels in das Probenlyseröhrchen oder in Transferröhrchen umgefüllt werden, wie im Abschnitt "Bearbeitung von Patientenproben" beschrieben. Vorbereitete Patientenproben können bei 2 °C bis 30 °C für bis zu 6 Tage gelagert werden.

Probenbearbeitung

Workflow mit Kappe unter Verwendung der Aptima SARS-CoV-2 Assay-Software

Probenbearbeitung unter Verwendung des Panther Fusion Probenlyseröhrchens

A. Vor der Testung im Panther System 500 µl der entnommenen Patientenprobe* in ein Panther Fusion Probenlyseröhrchen umfüllen.

*Hinweis: Wenn Sie eine eingefrorene Patientenprobe testen, bringen Sie die Patientenprobe vor der Verarbeitung auf Raumtemperatur.

Probenbearbeitung unter Verwendung des Aptima Probentransferröhrchens

A. Vor der Testung im Panther System 1 ml der entnommenen Patientenprobe* in ein Aptima Probentransferröhrchen umfüllen**.

*Hinweis: Wenn Sie eine eingefrorene Patientenprobe testen, bringen Sie die Patientenprobe vor der Verarbeitung auf Raumtemperatur.

**Hinweis: Alternativ kann ein unbenutztes Aptima Multitest-Röhrchen oder Aptima Unisex-Röhrchen verwendet werden.

- B. Das Aptima Probentransferröhrchen wieder fest verschließen.
- C. Drehen Sie das Röhrchen vorsichtig 2 bis 3 Mal um, um die vollständige Vermischung der Probe sicherzustellen.

Probenbearbeitung für Patientenproben, die mit dem Aptima Multitest-Probenentnahmekit entnommen wurden

A. Nach Platzieren der entnommenen Patientenprobe* im Aptima Multitest-Röhrchen unter Verwendung des Aptima Multitest-Probenentnahmekits ist keine weitere Bearbeitung erforderlich.

*Hinweis: Wenn Sie eine eingefrorene Patientenprobe testen, bringen Sie die Patientenprobe vor der Verarbeitung auf Raumtemperatur.

Workflow ohne Kappe unter Verwendung der Aptima SARS-CoV-2 Assay-Software

Probenbearbeitung unter Verwendung des Panther Fusion Probenlyseröhrchens

- A. Die Kappe des Panther Fusion Probenlyseröhrchens mit durchlässiger Kappe abnehmen. Die durchlässige Kappe kann aufbewahrt werden oder es kann eine undurchlässige Ersatzkappe im nächsten Schritt verwendet werden.
- B. Vor der Testung auf dem Panther System 500 µl der Patientenprobe in ein Panther Fusion Probenlyseröhrchen mit durchlässiger Kappe oder undurchlässiger Ersatzkappe umfüllen.
- C. Um Kontakt mit der Oberseite der Kappe zu vermeiden, die Kappe lösen und das Probenröhrchen im Probenständer platzieren.
- D. Die Kappe entfernen und entsorgen. Die Kappe zur Vermeidung von Kontamination nicht über Probenständer oder Probenröhrchen führen. Das Probenröhrchen inspizieren. Wenn Bläschen vorhanden sind, diese vorsichtig aus dem Probenröhrchen entfernen (z. B. mit der Spitze eines sterilen Tupfers oder einer ähnlichen Methode).
 - **Hinweis:** Werden die Bläschen nicht entfernt, kann dies die Assaybearbeitung beeinträchtigen und zu ungültigen Ergebnissen führen.
- E. Die Probenständerhalterung im Probenständer platzieren und den Ständer auf das Gerät laden.

Probenbearbeitung unter Verwendung des Hologic Probenlyseröhrchens mit undurchlässiger Kappe

- A. Die Kappe des Hologic Probenlyseröhrchens mit undurchlässiger Kappe abnehmen und aufbewahren.
- B. Vor der Testung auf dem Panther System 500 µl der Patientenprobe* in das Hologic Probenlyseröhrchen mit undurchlässiger Kappe umfüllen.
- C. Es wird empfohlen, das Röhrchen wieder mit dem Deckel zu verschließen und vorsichtig dreimal umzudrehen, um die Virusinaktivierung sowie eine homogene Mischung sicherzustellen.

- D. Um Kontakt mit der Oberseite der Kappe zu vermeiden, die Kappe lösen und das Probenröhrchen im Probenständer platzieren.
- E. Die Kappe entfernen und entsorgen. Die Kappe zur Vermeidung von Kontamination nicht über Probenständer oder Probenröhrchen führen. Das Probenröhrchen inspizieren. Wenn Bläschen vorhanden sind, diese vorsichtig aus dem Probenröhrchen entfernen (z. B. mit der Spitze eines sterilen Tupfers oder einer ähnlichen Methode).

Hinweis: Werden die Bläschen nicht entfernt, kann dies die Assaybearbeitung beeinträchtigen und zu ungültigen Ergebnissen führen.

F. Die Probenständerhalterung im Probenständer platzieren und den Ständer auf das Gerät laden.

Probenbearbeitung für Patientenproben, die mit dem Hologic Direct Load Capture Cap-Entnahmekit entnommen wurden

- A. Nach Platzieren der entnommenen Patientenprobe* im Hologic Direct Load Capture Cap-Röhrchen keine weitere Bearbeitung erforderlich.
 - *Hinweis: Wenn Sie eine eingefrorene Patientenprobe testen, bringen Sie die Patientenprobe vor der Verarbeitung auf Raumtemperatur.
- B. Um Kontakt mit der Oberseite der Kappe zu vermeiden, die Kappe lösen und das Probenröhrchen im Probenständer platzieren.
- C. Kappe und Tupfer entfernen und entsorgen. Die Kappe zur Vermeidung von Kontamination nicht über Probenständer oder Probenröhrchen führen. Das Probenröhrchen inspizieren. Wenn Bläschen vorhanden sind, diese vorsichtig aus dem Probenröhrchen entfernen (z. B. mit der Spitze eines sterilen Tupfers oder einer ähnlichen Methode).

Hinweis: Falls Tupfer nicht von der Kappe erfasst wurde, verschließen Sie das Röhrchen erneut durch, um sicherzustellen, dass der Tupfer erfasst und aus dem Röhrchen entfernt wird. Direct Load Capture Cap-Röhrchen, die einen Tupfer enthalten, dürfen nicht in das Panther System geladen werden.

Hinweis: Werden die Bläschen nicht entfernt, kann dies die Assaybearbeitung beeinträchtigen und zu ungültigen Ergebnissen führen.

D. Die Probenständerhalterung im Probenständer platzieren und den Ständer auf das Gerät laden.

Probenbearbeitung für Patientenproben, die mit dem Aptima Multitest-Probenentnahmekit entnommen wurden

- A. Die Anweisungen für das Panther Fusion Probenlyseröhrchen (Schritt A) oder das Hologic Probenlyseröhrchens mit undurchlässiger Kappe (Schritt A) einholen und befolgen.
- B. Vor der Testung auf dem Panther System 500 µl der aus dem Aptima Multitest-Röhrchen entnommenen Patientenprobe in ein Panther Fusion Probenlyseröhrchen oder Hologic Probenlyseröhrchen umfüllen, wie oben im Abschnitt "Probenbearbeitung" beschrieben.

Probenlagerung

- A. Auf dem Panther System gelagerte Proben können für zusätzliche Tests zu einem späteren Zeitpunkt archiviert werden.
- B. Lagerung von Proben vor oder nach dem Testen
 - 1. Patientenproben im Aptima Multitest-Röhrchen, Aptima Probenröhrchen, Hologic Direct Load Capture Cap-Röhrchen oder Probenlyseröhrchen sollten im Ständer aufrecht stehend unter folgender Bedingung gelagert werden:
 - 2 °C bis 30 °C für bis zu 6 Tage
 - 2. Die Proben sind mit einer neuen sauberen Plastikfolie oder einer Barrierefolie abzudecken.
 - 3. Wenn getestete Proben gefroren oder versandt werden müssen, entfernen Sie den durchlässigen Deckel und setzen Sie einen neuen undurchlässigen Deckel auf die Probenröhrchen. Wenn Proben zum Test an eine andere Einrichtung versendet werden müssen, müssen die empfohlenen Temperaturen eingehalten werden. Vor der Entfernung des Verschlusses müssen die Probentransportgefäße 5 Minuten bei einer relativen Zentrifugalkraft (RCF) von 420 zentrifugiert werden, damit sich die gesamte Flüssigkeit am Boden des Gefäßes sammelt. Spritzer und Kreuzkontamination vermeiden.

Transport von Patientenproben

Die Probenlagerungsbedingungen wie im *Abschnitt Probenentnahme und -lagerung auf* Seite 7 beschrieben aufrechterhalten.

Hinweis: Ein Versand der Patientenproben muss in Übereinstimmung mit geltenden nationalen, internationalen und regionalen Frachtbestimmungen erfolgen.

Poolen von Patientenproben – Festlegung einer geeigneten Strategie für Implementierung und Überwachung

Wenn ein Poolen von Patientenproben in Betracht gezogen wird, sollten Labore die Zweckmäßigkeit der Pooling-Strategie auf Grundlage der Positivitätsrate in der Testungspopulation und der Wirksamkeit des Pooling-Workflows beurteilen.

Vorbereiten der Proben für das Poolen

Die folgenden Patientenproben aus den oberen Atemwegen sind für die Verwendung mit dem Aptima SARS-CoV-2 Assay validiert und können innerhalb eines Proben-Poolings getestet werden: Nasopharyngeale, oropharyngeale und nasale Tupferproben sowie Tupferproben aus der mittleren Nasenmuschel, die einem Transportmedium für Patientenproben (STM) entnommen wurden. Jeder Probenpool muss aus unverdünnten, mit STM vorbereiteten Patientenproben bestehen. Der empfohlene Workflow für das Poolen von Proben ist unten angegeben.

Patientenproben sind in Entnahmeröhrchen mit 2,9 ml STM zu entnehmen

Anweisungen zur Vorbereitung von Patientenproben für Proben, die direkt in ein generisches Röhrchen gemischt werden

Führen Sie das nachfolgende Verfahren durch, wenn Sie Patientenproben poolen, die in 2,9 ml STM entnommen wurden, indem Patientenproben von Einzelpersonen gemäß den Spezifikationen in der *Bedienungsanleitung für das Panther oder Panther Fusion System* direkt in ein leeres Röhrchen umgefüllt wurden.

- A. Nehmen Sie ein leeres Röhrchen, das mit dem Panther System kompatibel ist.
- B. Ermitteln Sie auf Grundlage der implementierten Poolgröße das entsprechende Volumen, das von jeder Patientenprobe einer Einzelperson erforderlich ist. Für Patientenproben, die in 2,9 ml STM entnommen wurden, ist kein zusätzliches Verdünnen mit STM vor der Testung erforderlich.

Hinweis: Das empfohlene kombinierte Volumen jeder Patientenprobe einer Einzelperson ist abhängig von den Abmessungen des verwendeten Röhrchens. Empfehlungen zu den Mindestanforderungen an das Volumen für die Verarbeitung auf dem Panther System erhalten Sie über einen Hologic-Vertreter.

- C. Füllen Sie das vorgesehene Volumen jeder Patientenprobe einer Einzelperson vor der Testung auf dem Panther System aus den Röhrchen mit 2,9 ml STM in das leere Röhrchen.
- D. Gewährleisten Sie ein homogenes Mischen jedes vorbereiteten Probenpools.
- E. Bewahren Sie die Patientenproben von Einzelpersonen für zusätzliche Testungen auf, falls erforderlich.

Panther System

Nachstehend sind die Reagenzien für den Aptima SARS-CoV-2 Assay für das Panther System gelistet. Die Symbole zur Identifikation der Reagenzien sind neben dem Reagenznamen angegeben.

Im Lieferumfang enthaltene Reagenzien und Materialien

Aptima SARS-CoV-2 Assay Kit PRD-06419

250 Tests (2 Schachteln)

Aptima SARS-CoV-2, gekühlte Schachtel (Schachtel 1 von 2) (Lagerung bei 2 °C bis 8 °C nach Empfang)

Symbol	Komponente	Menge Kit für 250 Tests
Α	Aptima SARS-CoV-2 Amplifikationsreagenz Nicht infektiöse Nukleinsäuren, getrocknet in gepufferter Lösung mit < 5 % Füllstoff.	1 Fläschchen
E	Aptima SARS-CoV-2 Enzymreagenz Reverse Transkriptase und RNA-Polymerase, getrocknet in HEPES-gepufferter Lösung mit < 10 % Füllreagenz.	1 Fläschchen
Р	Aptima SARS-CoV-2 Sondenreagenz Nicht infektiöse chemilumineszierende DNA-Sonden, getrocknet in Succinatpufferlösung mit < 5 % Detergens.	1 Fläschchen
IC	Aptima SARS-CoV-2 Interne Kontrolle	1 Fläschchen

Aptima SARS-CoV-2, Raumtemperatur-Schachtel (Schachtel 2 von 2) (Lagerung bei 15 °C bis 30 °C nach Empfang)

Symbol	Komponente	Menge Kit für 250 Tests
AR	AR Aptima SARS-CoV-2 Amplifikationsrekonstitution Wässrige Lösung mit Konservierungsmitteln.	
ER	Aptima SARS-CoV-2 Lösung zur Enzymrekonstitution HEPES-gepufferte Lösung mit einer oberflächenaktiven Substanz und Glycerol.	1 x 11,1 ml
PR	Aptima SARS-CoV-2 Rekonstitutionslösung für Sondenreagenz Sukzinatgepufferte Lösung mit < 5 % Detergens.	1 x 35,4 ml
S	Aptima SARS-CoV-2 Selektionsreagenz 600 mM gepufferte Boratlösung mit oberflächenaktiver Substanz.	1 x 108 ml
TCR	Aptima SARS-CoV-2 Target-Capture-Reagenz Gepufferte Salzlösung mit Festphase und Fänger-Oligomeren.	1 x 54 ml
	Rekonstitutionsverbindungsstücke	3
	Barcode-Blatt für Hauptcharge	1 Blatt

Erforderliche und nicht im Lieferumfang enthaltene Materialien

Hinweis: Die von Hologic erhältlichen Materialien sind mit der Katalognummer aufgeführt, sofern nicht anders angegeben.

	Kat Nr.
Panther System	303095
Aptima Assayflüssigkeitskit (Aptima Waschlösung, Aptima Puffer für Deaktivierungsflüssigkeit und Aptima Ölreagenz)	303014 (1000 Tests)
Aptima Auto Detect Kit	303013 (1000 Tests)
Multi-Röhrchen-Einheiten (MTUs)	104772-02
Panther Entsorgungsbeutel-Kit	902731
Panther Abfallabdeckung	504405
Oder Panther Durchlaufkit enthält MTUs, Entsorgungsbeutel, Abdeckungen für Abfallbehälter, Assayflüssigkeiten und Auto Detects	303096 (5000 Tests)
Spitzen, 1000 μL, gefiltert, zur Flüssigkeitsstandmessung, leitfähig und Einwegmaterial	901121 (10612513 Tecan)
Nicht alle Produkte sind in allen Regionen verfügbar. Wenden Sie sich an Ihren Vertreter, um regionsspezifische Informationen zu erhalten	903031 (10612513 Tecan) MME-04134 (30180117 Tecan) MME-04128
Aptima SARS-CoV-2 Kontrollenkit PK – Aptima SARS-CoV-2 Positivkontrolle. Nicht infektiöse Nukleinsäure in gepufferter Lösung mit < 5 % Detergens. Menge: 5 x 1,7 ml NK – Aptima SARS-CoV-2 Negativkontrolle. Eine gepufferte Lösung mit < 5 % Detergens. Menge: 5 x 1,7 ml	PRD-06420
Aptima Multitest-Probenentnahmekit für Abstriche	PRD-03546
Hologic Direct Load Capture Cap Collection Kit - CLASSIQSwabs	PRD-06951
Hologic Direct Load Capture Cap Collection Kit - FLOQSwabs	PRD-06952
Aptima Probentransferkit	301154C
Aptima Probentransferkit – druckfähig	PRD-05110
Aptima Unisex-Tupfer-Probenentnahmekit für Endozervikalabstriche und Abstriche der männlichen Harnröhre	301041
Panther Fusion Probenlyseröhrchen, 100 pro Beutel Röhrchen enthält 0,71 ml STM mit einem durchstechbaren Deckel	PRD-04339
Hologic Probenlyseröhrchen, 100, jedes Röhrchen enthält 0,71 ml STM mit einem festen Deckel	PRD-06554
Bleichmittel, 5 % bis 7 % (0,7 M bis 1,0 M) Natriumhypochloritlösung	_
Einweghandschuhe	_

Kat.- Nr.

Undurchlässige Ersatzkappen

504415

Hologic undurchlässige Kappe für die Verwendung mit PRD-06951* und PRD-06952*, 100 Kappen pro Beutel

PRD-07028

* ein Einwegverschluss für das Hologic Direct Load Capture Cap (PRD-06951 und PRD-06952) nach der Testung als Teil des Workflows ohne Kappe

Ersatzkappen für die Kits mit 250 Tests

Rekonstitutionslösungen für Amplifikations-

und SondenreagenzCL0041 (100 Kappen)Rekonstitutionslösung für Enzymreagenz501616 (100 Kappen)TCR und SelektionsreagenzCL0040 (100 Kappen)

Optionale Materialien

Kat.- Nr.

Hologic Bleichmittel-Verstärker für die Reinigung

302101

für die routinemäßige Reinigung von Oberflächen und Geräten

Wippschüttler für Röhrchen

Testverfahren mit dem Panther System

Hinweis: Nähere Verfahrensinformationen finden Sie in der Bedienungsanleitung für das Panther/Panther System.

A. Vorbereitung des Arbeitsbereichs

Reinigen Sie die Arbeitsflächen, wo die Reagenzien und Proben vorbereitet werden. Die Arbeitsflächen mit einer 2,5 %-igen bis 3,5 %-igen (0,35 M bis 0,5 M) Natriumhypochloritlösung abwischen. Lassen Sie die Natriumhypochloritlösung mindestens 1 Minute auf den Flächen einwirken. Spülen Sie sie anschließend mit Wasser ab. Die Natriumhypochloritlösung darf nicht antrocknen. Decken Sie die Arbeitsfläche, auf der die Reagenzien und Proben vorbereitet werden, mit sauberen, absorbierenden Labortischunterlagen mit Kunststoffunterschicht ab.

B. Reagenzrekonstitution/Vorbereitung eines neuen Kits

Hinweis: Die Reagenzrekonstitution sollte vor Beginn von Arbeiten mit dem Panther System durchgeführt werden.

- Kombinieren Sie zur Rekonstitution von Amplifikations-, Enzym- und Sondenreagenz jeweils die Flasche mit gefriergetrocknetem Reagenz mit der Rekonstitutionslösung. Rekonstitutionslösungen, die möglicherweise gekühlt sind, vor Gebrauch auf Raumtemperatur erwärmen lassen.
 - a. Paaren Sie jede Rekonstitutionslösung mit ihrem gefriergetrockneten Reagenz. Stellen Sie vor Anbringung des Rekonstitutionsverbindungsstücks sicher, dass die Rekonstitutionslösung und das gefriergetrocknete Reagenz übereinstimmende Etikettenfarben aufweisen.

- b. Die Chargennummern auf dem Hauptchargen-Barcodeblatt kontrollieren, um sicherzustellen, dass die richtigen Reagenzien miteinander gepaart werden.
- c. Öffnen Sie das Fläschchen mit dem gefriergetrockneten Reagenz und stecken Sie das gekerbte Ende des Rekonstitutionsverbindungsstücks fest in die Fläschchenöffnung (Abb. 1, Schritt 1).
- d. Öffnen Sie die entsprechende Rekonstitutionslösung und legen Sie den Deckel auf eine saubere, abgedeckte Arbeitsfläche.
- e. Halten Sie die Flasche mit der Rekonstitutionslösung auf dem Labortisch fest und stecken Sie das andere Ende des Rekonstitutionsverbindungsstücks in die Flaschenöffnung (Abb. 1, Schritt 2).
- f. Drehen Sie die zusammengefügten Flaschen langsam um. Lassen Sie die Lösung aus der Flasche in das Glasfläschchen ablaufen (Abb. 1, Schritt 3).
- g. Die Lösung durch Schwenken des Glasfläschchens gründlich mischen (Abbildung 1, Schritt 4).
- h. Warten Sie, bis sich das gefriergetrocknete Reagenz aufgelöst hat, und drehen Sie dann die zusammengebauten Flaschen erneut um. Ein Neigungswinkel von 45° ermöglicht, die Schaumbildung auf ein Mindestmaß zu beschränken (Abb. 1, Schritt 5). Lassen Sie die gesamte Flüssigkeit in die Plastikflasche zurücklaufen.
- i. Entfernen Sie das Rekonstitutionsverbindungsstück und das Glasfläschchen (Abb. 1, Schritt 6).
- j. Verschließen Sie die Plastikflasche wieder. Tragen Sie die Initialen des Anwenders und das Rekonstitutionsdatum auf dem Etikett ein (Abb. 1, Schritt 7).
- k. Entsorgen Sie das Rekonstitutionsverbindungsstück und das Glasfläschchen (Abbildung 1, Schritt 8).

Option: Das zusätzliche Mischen von Amplifikation, Enzym und Sondenreagenzien mithilfe einer Wippe für Röhrchen ist zulässig. Die Reagenzien können gemischt werden, indem die wieder verschlossene Plastikflasche mindestens 5 Minuten auf einem Wippschüttler für Röhrchen platziert wird, der auf 20 U/min (oder äquivalent) eingestellt ist.

Warnung: Bei der Rekonstitution von Reagenzien Schaumbildung vermeiden. Schaum beeinträchtigt die Füllstandsmessung im Panther System.

Warnung: Ausreichendes Mischen der Reagenzien ist erforderlich, um die erwarteten Testergebnisse zu erhalten.

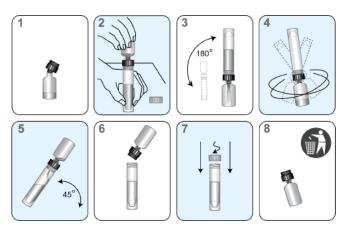


Abbildung 1. Rekonstitutionsverfahren mit dem Panther System

- 2. Vorbereitung des Target-Capture-Arbeitsreagenz (wTCR)
 - a. Stellen Sie sicher, dass die richtigen Flaschen TCR und IC miteinander gepaart wurden.
 - b. Prüfen Sie die Reagenzchargennummern auf dem Hauptchargen-Barcodeblatt, um sicherzustellen, dass die entsprechenden Reagenzien im Kit miteinander gepaart wurden.
 - c. Die TCR-Flasche öffnen und den Verschluss auf eine saubere, abgedeckte Arbeitsfläche legen.
 - d. Öffnen Sie die Flasche mit der IC und gießen Sie den gesamten Inhalt in die Flasche mit TCR. Sie k\u00f6nnen erwarten, dass eine geringe Menge Fl\u00fcssigkeit in der IC-Flasche verbleibt.
 - e. Die TCR-Flasche verschließen und die Lösung behutsam schwenken, um den Inhalt zu durchmischen. Während dieses Schritts Schaumbildung vermeiden.
 - f. Die Initialen des Anwenders und das aktuelle Datum auf das Etikett schreiben.
 - g. Entsorgen Sie die IC-Flasche und den Deckel.
- 3. Vorbereitung des Selektionsreagenz
 - a. Die Chargennummer auf der Reagenzflasche überprüfen, um sicherzustellen, dass sie mit der Chargennummer auf dem Hauptchargen-Barcodeblatt übereinstimmt.
 - b. Die Initialen des Anwenders und das aktuelle Datum auf das Etikett schreiben.

Hinweis: Alle Reagenzien vor dem Laden in das System durch vorsichtiges Umdrehen gründlich durchmischen. Beim Umdrehen der Reagenzien Schaumbildung vermeiden.

- C. Reagenzienvorbereitung für bereits rekonstituierte Reagenzien
 - 1. Zuvor rekonstituierte Sonden-, Amplifikations-, Enzym- und Sondenreagenzien müssen vor dem Start des Tests auf Raumtemperatur (15 °C bis 30 °C) gebracht werden.
 - **Option:** Die Reagenzien können auf Raumtemperatur gebracht werden, indem rekonstituierte Amplifikation, Enzym und Sondenreagenzien mindestens 25 Minuten auf einem Wippschüttler für Röhrchen platziert werden, der auf 20 U/min (oder äquivalent) eingestellt ist.
 - 2. Wenn das rekonstituierte Sondenreagenz einen Niederschlag enthält, der bei Raumtemperatur nicht wieder in Lösung geht, erwärmen Sie die mit Deckel verschlossene Flasche 1 bis 2 Minuten auf eine Temperatur von nicht über 62 °C. Nach diesem Erwärmungsschritt kann das Sondenreagenz verwendet werden, selbst wenn noch ein

- Restpräzipitat vorhanden ist. Mischen Sie das Sondenreagenz vor dem Laden in das System durch Umdrehen, ohne Schaum zu bilden.
- 3. Mischen Sie alle Reagenzien vor dem Laden in das System durch vorsichtiges Umdrehen gründlich durch. Beim Umdrehen der Reagenzien Schaumbildung vermeiden. Dieser Schritt ist nicht erforderlich, wenn Reagenzien nach dem Mischen auf dem Wippschüttler für Röhrchen direkt in das System geladen werden.
- 4. Reagenzflaschen nicht nachfüllen. Das Panther System erkennt Flaschen, die nachgefüllt wurden, und nimmt sie nicht an.
- 5. Ausreichendes Mischen der Reagenzien ist erforderlich, um die erwarteten Testergebnisse zu erhalten.
- D. Handhabung der Proben unter Verwendung des Panther Fusion Probenlyseröhrchens oder Aptima Probentransferröhrchens

Hinweis: Bevor Sie die Patientenproben in das Panther System laden, bereiten Sie die Patientenproben entsprechend den Probenhandhabungsanweisungen im Abschnitt Probenentnahme und -lagerung vor.

1. Prüfen Sie die Probenröhrchen vor dem Laden in den Ständer. Wenn ein Probenröhrchen Luftblasen enthält oder ein geringeres Volumen als üblicherweise besitzt, klopfen Sie leicht auf den Boden des Röhrchens, damit der Inhalt auf den Boden sinkt.

Hinweis: Stellen Sie zur Vermeidung von Bearbeitungsfehlern bei Proben, die in das Panther Fusion Probenlyseröhrchen oder das Aptima Probentransferröhrchen umgefüllt wurden, sicher, dass dem Röhrchen das korrekte Probenvolumen hinzugefügt wird. Wenn dem Röhrchen die korrekte entnommene Patientenprobe hinzugefügt wird, reicht das Volumen für die Durchführung von 3 Nukleinsäureextraktionen.

- E. Probenhandhabung bei Verwendung des Hologic Probenlyseröhrchens
 - 1. Patientenproben entsprechend den Probenbearbeitungsanweisungen im Abschnitt *Probenentnahme und -lagerung* vorbereiten.

Hinweis: Zur Vermeidung von Bearbeitungsfehlern bei Proben, die in das Hologic Probenlyseröhrchen umgefüllt wurden, ist sicherzustellen, dass dem Röhrchen das korrekte Probenvolumen hinzugefügt wird.

Hinweis: Wenn dem Hologic Probenlyseröhrchen (PRD-06554) die korrekt entnommene Patientenprobe hinzugefügt wird, reicht das Volumen für die Durchführung von 2 Nukleinsäureextraktionen.

Hinweis: Bei Verwendung der Software für den Aptima SARS-CoV-2 Assay mit unverschlossenem Röhrchen entfernen Sie die Kappe von den Positiv- und Negativkontrollen vor dem Laden in das Panther System.

- F. Vorbereitung des Systems
 - 1. Richten Sie das System entsprechend den Anweisungen im *Bedienungsanleitung für das Panther/Panther Fusion System* und unter *Verfahrenshinweise* ein. Achten Sie darauf, dass Reagenzienständer und TCR-Adapter geeigneter Größe verwendet werden.
 - 2. Laden Sie die Proben.

Verfahrenshinweise

A. Kontrollen

- 1. Um einen vorschriftsmäßigen Betrieb mit der Aptima Assay Software für das Panther system sicherzustellen, ist ein Paar Kontrollen erforderlich. Die Aptima SARS-CoV-2 Positivkontrollen und Negativkontrollen können in eine beliebige Ständerposition bzw. Bahn im Probenfach des Panther systems geladen werden. Die Pipettierung der Patientenproben beginnt, sobald eine der beiden folgenden Bedingungen erfüllt ist:
 - a. Das System bearbeitet derzeit ein Kontrollenpaar.
 - b. Gültige Ergebnisse für die Kontrollen werden auf dem System registriert.
- 2. Sobald die Kontrollenröhrchen für ein bestimmtes Reagenzien-Kit pipettiert wurden und in Bearbeitung sind, können mit dem zugehörigen Kit bis zu 24 Stunden lang Patientenproben ausgeführt werden, es sei denn, dass:
 - a. die Kontrollenergebnisse ungültig sind.
 - b. das zugehörige Assay-Reagenzien-Kit aus dem System genommen wird.
 - c. das zugehörige Assay-Reagenzien-Kit die Stabilitätsgrenze überschritten hat.
- 3. Jedes Aptima-Kontrollröhrchen kann einmal getestet werden. Wenn versucht wird, mehr als einmal aus dem Röhrchen zu pipettieren, kann es zu Fehlern aufgrund unzureichender Mengen kommen.
- 4. Die Pipettierung der Patientenproben beginnt, sobald eine der beiden folgenden Bedingungen erfüllt ist:
 - a. Gültige Ergebnisse für die Kontrollen werden auf dem System registriert.
 - b. Das System behandelt derzeit die Assaykontrollen.

B. Temperatur

Raumtemperatur ist definiert als 15 °C bis 30 °C.

C. Handschuhpuder

Wie bei jedem Reagenzsystem kann übermäßiger Puder auf manchen Handschuhen eine Kontamination geöffneter Röhrchen verursachen. Es werden ungepuderte Handschuhe empfohlen.

D. Überwachungsprotokoll für Laborkontamination für das Panther System

Es gibt viele laborspezifische Faktoren, die zu einer Kontamination beitragen können, darunter Testvolumen, Arbeitsablauf, Krankheitsprävalenz und verschiedene andere Laboraktivitäten. Diese Faktoren sind zu berücksichtigen, wenn die Häufigkeit der Kontaminationsüberwachung festgelegt wird. Die Intervalle zur Kontaminationsüberwachung sollten im Hinblick auf die Praktiken und Verfahren jedes Labors festgelegt werden.

Zur Überwachung der Laborkontamination kann das folgende Verfahren mit dem Aptima Unisex-Tupfer-Probenentnahmekit für endozervikale und männliche urethrale Abstrichproben durchgeführt werden:

- 1. Beschriften Sie die Tupfertransportröhrchen mit den Zahlen, die den zu testenden Bereichen entsprechen.
- 2. Nehmen Sie den Probenentnahmetupfer (blauer Schaft mit grünem Aufdruck) aus der Verpackung, feuchten Sie den Tupfer im Probentransportmedium (STM) an und nehmen Sie im ausgewiesenen Bereich mit einer Kreisbewegung einen Abstrich auf.

- 3. Setzen Sie den Tupfer sofort in das Transportröhrchen ein.
- 4. Den Tupferschaft an der Einkerbung vorsichtig abbrechen. Dabei darauf achten, dass der Inhalt nicht verspritzt wird.
- 5. Das Transportgefäß für den Probenentnahmetupfer wieder fest verschließen.
- 6. Schritt 2 bis 5 für alle Abstrichbereiche wiederholen.
- E. Wenn die Ergebnisse positiv sind, siehe *Interpretation der Ergebnisse*. Für weitere Informationen über die spezifische Kontaminationsüberwachung des Panther systems wenden Sie sich an den Technischen Kundendienst von Hologic.

Qualitätskontrolle

Ein Durchlauf- oder Patientenprobenergebnis kann vom Panther system für ungültig erklärt werden, wenn während der Durchführung des Assays Probleme auftreten. Proben mit ungültigen Ergebnissen müssen erneut getestet werden.

Negativ- und Positivkontrollen

Zur Erzeugung gültiger Ergebnisse muss ein Satz von Assay-Kontrollen getestet werden. Ein Replikat der negativen Assaykontrolle und der positiven Assaykontrolle müssen jedes Mal getestet werden, wenn ein neues Kit in das Panther System geladen wird oder wenn das aktuelle Set gültiger Kontrollen das Verfallsdatum überschritten hat.

Das Panther System ist so konfiguriert, dass Assaykontrollen in einem vom Administrator festgelegten Intervall von bis zu 24 Stunden durchgeführt werden. Die Software des Panther Systems warnt den Anwender, wenn Assaykontrollen notwendig sind und beginnt neue Tests erst, wenn die Assaykontrollen geladen wurden und die Verarbeitung begonnen hat.

Während der Verarbeitung werden die Annahmekriterien für die Assaykontrollen vom Panther System automatisch verifiziert. Zur Erzeugung gültiger Ergebnisse müssen die Assaykontrollen eine Reihe von Gültigkeitsprüfungen bestehen, die vom Panther System durchgeführt werden.

Wenn die Assaykontrollen alle Gültigkeitsprüfungen bestanden haben, werden sie für das vom Administrator festgelegte Zeitintervall als gültig erachtet. Wenn dieses Zeitintervall abgelaufen ist, sind die Assaykontrollen für das Panther System verfallen, weshalb die Testung eines neuen Assaykontrollsets notwendig ist, bevor neue Probendurchläufe begonnen werden.

Wenn eine der Assaykontrollen die Gültigkeitsprüfungen nicht besteht, annulliert das Panther System automatisch die betroffenen Proben, und es ist die Testung eines neuen Assaykontrollsets erforderlich, bevor neue Probendurchläufe begonnen werden.

Interne Kontrolle

Jeder Probe mit dem wTCR wird eine interne Kontrolle hinzugefügt. Während der Verarbeitung werden die Annahmekriterien für interne Kontrollen von der Software auf dem Panther System automatisch verifiziert. Der Nachweis der internen Kontrolle ist nicht erforderlich für Proben, die für SARS-CoV-2 positiv sind. Die interne Kontrolle muss in allen Proben nachgewiesen werden, die negativ für SARS-CoV-2-Targets sind; Proben, die diese Kriterien nicht erfüllen, werden als ungültig berichtet. Jede Probe mit einem ungültigen Ergebnis muss erneut getestet werden.

Das Panther System verifiziert alle Prozesse genau, wenn gemäß den Anweisungen in dieser Packungsbeilage und in der *Bedienungsanleitung für das Panther/Panther Fusion System* verfahren wird.

Interpretation der Ergebnisse

Das Panther System bestimmt automatisch die Ergebnisse für Proben und Kontrollen. Testergebnisse können negativ, positiv oder ungültig sein.

Tabelle 1 zeigt die möglichen Ergebnisse, die in einem gültigen Durchlauf mit den Interpretationen des Ergebnisses angegeben werden.

Tabelle 1: Result Interpretation (Ergebnisinterpretation)

SARS-CoV-2-Ergebnis IC-Ergebnis		Auswertung
Neg.	Gültig	Kein SARS-CoV-2 nachgewiesen.
POS.	Gültig	SARS-CoV-2 nachgewiesen.
Ungültig	Ungültig	Ungültig. Bei der Erzeugung des Ergebnisses ist ein Fehler aufgetreten; Probe erneut testen.

Hinweis: Der Nachweis der internen Kontrolle ist nicht erforderlich für Proben, die für SARS-CoV-2 positiv sind.

Auswertung der Ergebnisse für gemischte Proben

Negativ: Negative Ergebnisse aus Testungen gemischter Proben sollten nicht als endgültig gehandhabt werden. Wenn die klinischen Anzeichen und Symptome des Patienten nicht mit einem negativen Ergebnis übereinstimmen und Ergebnisse für die Patientenversorgung erforderlich sind, sollte eine Einzeltestung für den Patienten in Betracht gezogen werden. Das Poolen von Proben sollte für alle Patientenproben indiziert sein, für die negative Ergebnisse gemeldet wurden.

Positiv: Patientenproben mit einem positiven Probenpool-Ergebnis müssen vor der Meldung eines Ergebnisses einzeln getestet werden. Patientenproben mit niedriger Viruslast können aufgrund der niedrigeren Sensitivität bei gemischten Testungen nicht in Proben-Pools nachgewiesen werden.

Ungültig: Patientenproben mit einem ungültigen Ergebnis müssen vor der Meldung eines Ergebnisses einzeln getestet werden. Im Falle eines ungültigen Durchlaufs kann ein Wiederholungstest gemischter Patientenproben in Abhängigkeit des Labor-Workflows und der erforderlichen Zeit bis zum Melden des Ergebnisses jedoch angemessen sein.

Einschränkungen

- A. Dieser Test darf nur von Mitarbeitern durchgeführt werden, die in der Durchführung des Tests unterwiesen wurden. Eine Nichtbefolgung dieser Anweisungen kann fehlerhafte Ergebnisse zur Folge haben.
- B. Zuverlässige Ergebnisse hängen von der korrekten Entnahme, dem Transport, der Lagerung und der Verarbeitung der Patientenproben ab.
- C. Eine Kontamination ist durch Einhaltung der guten Laborpraxis und der in der vorliegenden Packungsbeilage angegebenen Vorgehensweise zu vermeiden.
- D. Ein positives Ergebnis zeigt den Nachweis von Nukleinsäure aus dem entsprechenden Virus an. Nukleinsäure kann weiter vorhanden sein, auch nachdem das Virus nicht mehr vermehrungsfähig ist.
- E. Der Aptima SARS-CoV-2 Assays ist bei der Verwendung zur Vorsorgeuntersuchung in einer asymptomatischen Allgemeinbevölkerung darauf ausgelegt, im Rahmen eines Plans zur Infektionsbekämpfung verwendet zu werden, der zusätzliche Vorsorgemaßnahmen umfassen kann, z. B. ein vorgegebener serieller Testplan oder das gezielte Testen von Hochrisikopersonen. Negative Ergebnisse sollten als präsumtiv betrachtet werden und schließen eine aktuelle oder zukünftige Infektion aufgrund einer Übertragung durch gesellschaftlichen Umgang in der Allgemeinbevölkerung oder aufgrund anderer Expositionen nicht aus. Negative Ergebnisse müssen zusammen mit den jüngsten Expositionen sowie früheren und aktuellen klinischen Anzeichen und Symptomen einer Person geprüft werden, die mit COVID-19 übereinstimmen.
- F. Asymptomatische Personen mit einer COVID-19-Infektion scheiden möglicherweise nicht ausreichend Viren aus, um die Nachweisgrenze des Tests zu erreichen, wodurch ein falsch negatives Ergebnis angezeigt wird.
- G. Fehlende Symptome erschweren die Feststellung, ob ein asymptomatischer Patient zu spät oder zu früh getestet wurde. Daher können negative Ergebnisse bei asymptomatischen Patienten auch bei folgenden Personen angezeigt werden: Personen, die zu früh getestet wurden und möglicherweise später positiv werden, Personen, die zu spät getestet wurden und bei denen das Vorhandensein einer Infektion serologisch nachgewiesen wurde, oder Personen, die zu keinem Zeitpunkt infiziert waren.
- H. Die folgenden Typen des VTM/UTM wurden verifiziert.
 - Remel MicroTest M4, M4RT, M5 oder M6 Formulierungen
 - Copan Universal Transport Medium
 - BD Universal Viral Transport Medium

Hinweis: Kein Medium verwenden, das möglicherweise Guanidiniumthiocyanat oder ein Guanidin-haltiges Material enthält.

Panther SARS-CoV-2 Assay-Leistung

Analytische Sensitivität

Die analytische Sensitivität (Nachweisgrenze oder LoD) des Aptima SARS-CoV-2 Assay wurde nachgewiesen, indem Verdünnungsreihen gemischter negativer klinischer nasopharyngealer Abstrichproben getestet wurden, die mit dem inaktivierten, kultivierten SARS-CoV-2-Virus versetzt waren (USA-WA1/2020; BEI Resources; NR-52281). Es wurden zehn Replikate jeder Verdünnungsreihe unter Verwendung von jeweils zwei Assayreagenzienchargen auf zwei Panther Systemen untersucht. Für die LoD wurde 0,01 TCID₅₀/ml in der Testprobe nachgewiesen und durch Testung von 20 zusätzlichen Replikaten mit einer Assayreagenziencharge verifiziert. Die LoD wurde außerdem unter Verwendung der Abstrichprobenentnahme-Medien Kochsalzlösung, flüssige Amies- und Probentransportmedium (STM) bestätigt.

Es wurde eine Studie mit ähnlichem Design durchgeführt, um die analytische Sensitivität des Aptima SARS-CoV-2 Assays unter Verwendung von Speichelproben zu bestimmen. Gemischte, negative klinische Speichelprobenmatrix wurde mit inaktiviertem, kultiviertem SARS-CoV-2-Virus versetzt (USA-WA1/2020; BEI Resources: NR-52281). Für die LoD wurde 0,01 TCID₅₀/ml in der Testprobe nachgewiesen, die einer Konzentration von 0,13 TCID₅₀/ml in der entnommenen Speichelprobe entspricht.

Die analytische Sensitivität des Aptima SARS-CoV-2 Assays wurde zusätzlich unter Verwendung von Referenzmaterial von drei gewerblichen Anbietern beurteilt. Es wurden Verdünnungsreihen des Referenzmaterials in STM hergestellt und 20 oder mehr Replikate auf jeder Stufe unter Verwendung von zwei Assayreagenzienchargen auf zwei Panther Systemen getestet. Die Referenzmaterialien und die niedrigsten Verdünnungsstufen, die eine Detektion von ≥ 95 % ergaben, sind in Tabelle 2 aufgeführt.

Tabelle 2: Beurteilung der analytischen Sensitivität von gewerblichem Referenzmaterial

Anbieter	Name	Referenznr.	Chargen-Nr.	Analytische Sensitivität
ZeptoMetrix	SARS-CoV-2 Externe Laufkontrolle	NATSARS(COV2)-ERC	324332	83 Kopien/ml
SeraCare	AccuPlex SARS-Cov-2 Referenzmaterial	0505-0126	10483977	83 Kopien/ml
Exact Diagnostic	SARS-CoV-2 Standard	COV019	20033001	83 Kopien/ml

Analytische Sensitivität mit dem Workflow des Aptima Probentransferröhrchens

Die ermittelte analytische Sensitivität (Nachweisgrenze) von 0,01 TCID₅₀/ml für den Aptima SARS-CoV-2 Assay wurde unter Verwendung des Vorbereitungs-Workflows des Aptima Probentransferröhrchens bestätigt. Die Bestätigung wurde mit inaktiviertem, kultiviertem SARS-CoV-2-Virus (USA-QA1/2020; BEI Resources; NR-52281) in den Abstrichprobenentnahme-Medien negativer, klinischer nasopharyngealer (NP) Abstrich, Kochsalzlösung, flüssige Amiesund Probentransportmedium (STM) durch Testung von 20 Replikaten mit einer Reagenzcharge durchgeführt (Tabelle 3).

Target	Matrix	N gültig	N positiv	% positiv	Durchschn. kRLU	Std.Abw. kRLU	% VK
	NP-Abstrich	20	20	100 %	1063	61	5,8 %
Inaktivierter SARS-CoV-2-Virus	STM	20	20	100 %	1064	116	10,9 %
	Kochsalzlösung	20	20	100 %	1102	60	5,4 %
	Flüssige Amies	20	20	100 %	1101	51	4,7 %

Tabelle 3: Bestätigung der LoD mit dem Aptima Probentransfer-Workflow

Inklusivität

Die Inklusivität des Aptima SARS-CoV-2 Assay wurde unter Verwendung der *In-silico*-Analyse der Assay-Target Capture-Oligos, Amplifikationsprimer und Detektionssonden in Bezug auf 9.896 SARS-CoV-2-Sequenzen untersucht, die in den Gen-Datenbanken des NCBI und der GISAID verfügbar sind. Jede Sequenz mit fehlenden oder mehrdeutigen Sequenzinformationen wurde aus der Analyse entfernt, was dazu führte, dass 9.879 Sequenzen für die erste Target-Region des Assays und 9.880 Sequenzen für die zweite Target-Region untersucht wurden. Die *In-silico*-Analyse zeigte eine 100 %-ige Homologie für die Assay-Oligos beider Target-Systeme für die 9.749 (98,5 %) untersuchten Sequenzen und eine 100 %-ige Homologie für die Assay-Oligos von mindestens einem Target-System für alle 9.896 Sequenzen. Es gab keine untersuchten Sequenzen mit identifizierten Inkongruenzen, die die Anbindung oder Leistung beider Target-Systeme voraussichtlich beeinträchtigen würden.

Analytische Spezifität und mikrobielle Interferenz

Die analytische Spezifität des Aptima SARS-CoV-2 Assay wurde untersucht, indem 30 Mikroorganismen getestet wurden, die gängige Erreger von Atemwegserkrankungen oder eng verwandte Arten repräsentieren (Tabelle 4). Bakterien wurden bei 10⁶ CFU/ml und Viren bei 10⁵ TCID₅₀/ml getestet, wenn nicht anders vermerkt. Mikroorganismen wurden mit und ohne Vorhandensein des inaktivierten SARS-CoV-2-Virus bei dreifacher LoD getestet. Die analytische Spezifität des Aptima SARS-CoV-2 Assay betrug 100 % ohne Nachweis einer mikrobiellen Interferenz.

Zusätzlich zu der Testung von Mikroorganismen wurde eine *In-silico*-Analyse durchgeführt, um die Spezifität des Assays im Verhältnis zu den in Tabelle 4 aufgeführten Mikroorganismen zu beurteilen. Die *In-silico*-Analyse zeigte keine wahrscheinliche Kreuzreaktivität mit einer der 112 untersuchten GenBank-Sequenzen.

Mikroorganismus	Konzentration	Mikroorganismus	Konzentration
Humanes Coronavirus 229E	1E+5 TCID ₅₀ /ml	Parainfluenzavirus 1	1E+5 TCID ₅₀ /ml
Humanes Coronavirus OC43	1E+5 TCID ₅₀ /ml	Parainfluenzavirus 2	1E+5 TCID ₅₀ /ml
Humanes Coronavirus HKU1 ¹	1E+6 Kopien/ml	Parainfluenzavirus 3	1E+5 TCID ₅₀ /ml
Humanes Coronavirus NL63	1E+4 TCID ₅₀ /ml	Parainfluenzavirus 4	1E+3 TCID ₅₀ /ml
SARS-Coronavirus ¹	1E+6 Kopien/ml	Influenza A	1E+5 TCID ₅₀ /ml
MERS-Coronavirus	1E+4 TCID ₅₀ /ml	Influenza B	2E+3 TCID ₅₀ /ml
Adenovirus (z. B. C1 Ad. 71)	1E+5 TCID ₅₀ /ml	Enterovirus (z. B. EV68)	1E+5 TCID ₅₀ /ml
Humanes Metapneumovirus (hMPV)	1E+6 TCID ₅₀ /ml	Rhinovirus	1E+4 TCID ₅₀ /ml
Respiratory syncytial virus	1E+5 TCID ₅₀ /ml	Legionella pneumophila	1E+6 KBE/ml
Chlamydia pneumoniae	1E+6 IFU/ml	Mycobacterium tuberculosis	1E+6 TCID ₅₀ /ml
Haemophilus influenzae	1E+6 KBE/ml	Streptococcus pneumoniae	1E+6 KBE/ml
Bordetella pertussis	1E+6 KBE/ml	Streptococcus pyogenes	1E+6 KBE/ml
Pneumocystis jirovecii (PJP)	1E+6 nuc/ml	Streptococcus salivarius	1E+6 KBE/ml
Candida albicans	1E+6 KBE/ml	Mycoplasma pneumoniae	1E+6 KBE/ml
Staphylococcus epidermidis	1E+6 KBE/ml	Pseudomonas aeruginosa	1E+6 KBE/ml
Gemischte humane Nasalspülung ² - zur Darstellung einer vielfältigen mikrobiologischen Flora in den menschlichen Atemwegen	n. z.		

Tabelle 4: Analytische Spezifität für Aptima SARS-CoV-2 und Mikroorganismen mit mikrobieller Interferenz

Klinische Leistungsdaten

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assay wurden im Vergleich zum Panther Fusion SARS-CoV-2 Assay (Hologic, Inc.) unter Verwendung eines Panels aus verbleibenden klinischen Patientenproben beurteilt. Für die Studie wurden verbleibende, klinische nasopharyngeale Patientenproben von amerikanischen Patienten mit Anzeichen und Symptomen einer Atemwegsinfektion entnommen.

Die positive prozentuale Übereinstimmung (Positive Percent Agreement, PPA) und negative prozentuale Übereinstimmung (NPA) wurde im Verhältnis zum Panther Fusion Assay als Referenzergebnis berechnet, wie in Tabelle 5 dargestellt. Der Aptima SARS-CoV-2 Assay zeigte positive und negative Übereinstimmungen von jeweils 100 % und 98,2 %.

Nasopharyngeale Spüllösung/nasopharyngeales Aspirat, nasale Aspirate, nasale Abstrichproben und nasale Abstrichproben aus der mittleren Nasenmuschel sind akzeptable Patientenproben für die Testung auf virale Atemwegsinfektionen. Die Leistung mit diesen Patientenprobentypen wurde jedoch nicht spezifisch mit dem Aptima SARS-CoV-2 Assay beurteilt.

¹ Das kultivierte Virus und die gereinigte Nukleinsäure des Gesamtgenoms für das Humane Coronavirus HKU1 und SARS-Coronavirus sind nicht stets verfügbar. Es wurden IVTs des HKU1 und des SARS-Coronavirus, die den ORF1ab-Genregionen entsprechen, auf die der Assay abzielt, zur Untersuchung der Kreuzreaktivität und mikrobiellen Interferenz verwendet.

² Anstelle der Untersuchung von gemischter Nasalspülung wurde eine Testung von 30 einzelnen, negativen klinischen NP-Abstrichproben durchgeführt, um eine vielfältige mikrobiologischen Flora in den menschlichen Atemwegen zu repräsentieren.

Tabelle 5: Klinische Übereinstimmung des Aptima SARS-CoV-2

		Panther Fusion SARS-CoV-2 Assay		
		Positiv	Negativ	
Aptima SARS-CoV-2 Assay —	Positiv	50	1	
Aptillia SARS-COV-2 ASSAY —	Negativ	0	54	

Positive prozentuale Übereinstimmung: (95 % KI): 100 % (92,9 % – 100 %) Negative prozentuale Übereinstimmung: (95 % KI): 98,2 % (90,4 % – 99,7 %) Gesamtübereinstimmung: (95 % KI): 99,0 % (94,8 % – 99,8 %)

Klinische Leistungsdaten mit künstlichem Panel

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assay unter Verwendung des Workflows zur Patientenprobenvorbereitung des Aptima Probentransferröhrchens wurde im Vergleich zu einem Panel aus künstlichen Patientenproben beurteilt. Für die Studie wurde ein Panel aus 115 verbleibenden, klinischen nasopharyngealen Patientenproben unter Verwendung der Workflows des Panther Fusion Probenlyseröhrchens (Probenlyseröhrchen) und des Aptima Probentransferröhrchens getestet. Alle Patientenproben wurden von US-amerikanischen Patienten mit Anzeichen und Symptomen einer Atemwegsinfektion entnommen. Das Panel bestand aus 65 SARS-CoV-2-positiven und 50 SARS-CoV-2-negativen Patientenproben. Von den 65 positiven Patientenproben waren 40 bei Konzentrationen einer 0,5- bis 2-fachen LoD und 25 bei Konzentrationen einer 3- bis 5-fachen LoD unter Verwendung eines inaktivierten, kultivierten SARS-CoV-2-Virus (USA-QA1/2020; BEI Resources; NR-52281) als Target.

Die positive prozentuale Übereinstimmung (PPA) und negative prozentuale Übereinstimmung (NPA) für beide Workflows zur Vorbereitung von Patientenproben wurde im Verhältnis zum erwarteten Ergebnis des Panels aus künstlichen Patientenproben berechnet, wie in Tabelle 6 für das Aptima Probentransferröhrchen und Tabelle 7 für das Probenlyseröhrchen dargestellt. Nachweischarakteristika für die künstlichen Patientenproben wurden nach Target-Konzentration berechnet, wie in Tabelle 8 dargestellt. Beide Workflows zur Vorbereitung von Patientenproben zeigten eine 100 %-ige Übereinstimmung für die untersuchten Panels.

Tabelle 6: Die Leistung des Workflows des Aptima Probentransferröhrchens im Verhältnis zu den erwarteten Ergebnissen

		Erwartetes Ergebnis				
		Gesamt				
Aptima	Positiv	65	0	65		
Probentransferergebnis	Negativ	0	50	50		
	Gesamt	65	50	115		

Gesamtübereinstimmung: 100 % (96,8 % – 100 %) Positive Übereinstimmung: 100 % (94,4 % – 100 %) Negative Übereinstimmung: 100 % (92,9 % – 100 %)

Tabelle 7: Die Leistung des Workflows des Probenlyseröhrchens im Verhältnis zu den erwarteten Ergebnissen

		Erwartetes Ergebnis				
		Positiv Negativ G				
Drobonlyggröbroben Ergebnig	Positiv	65	0	65		
Probenlyseröhrchen-Ergebnis —	Negativ	0	50	50		
	Gesamt	65	50	115		

Gesamtübereinstimmung: 100 % (96,8 % – 100 %) Positive Übereinstimmung: 100 % (94,4 % – 100 %) Negative Übereinstimmung: 100 % (92,9 % – 100 %)

Tabelle 8: Detektionscharakteristika für künstliche nasopharyngeale Abstrichproben

	Beispiel-Workflow für Aptima Probentransfer						Beisp	iel-Wo	rkflow f	ür Probenly	/seröhr	chen
Target- Konz.	n Gültig	n Positiv	% Positiv	Durchschnitt kRLU	St.Abw. kRLU	% VK	n Gültig	n Positiv	% Positiv	Durchschnitt kRLU	St.Abw. kRLU	% VK
Neg.	50	0	0	299	9,7	3,2	50	0	0	300	9,3	3,1
0,5x LoD	10	10	100	1050	208,5	19,9	10	10	100	1153	113,0	9,8
1,0x LoD	10	10	100	1176	102,1	8,7	10	10	100	1205	24,3	2,0
1,5x LoD	10	10	100	1222	31,6	2,6	10	10	100	1223	21,9	1,8
2,0x LoD	10	10	100	1225	22,6	1,8	10	10	100	1237	26,0	2,1
3,0x LoD	10	10	100	1228	13,6	1,1	10	10	100	1215	25,5	2,1
4,0x LoD	5	5	100	1238	16,7	1,4	5	5	100	1212	12,5	1,0
5,0x LoD	10	10	100	1237	18,2	1,5	10	10	100	1246	28,3	2,3

Klinische Leistungsdaten mit natürlich infizierten, positiven Patientenproben

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assay unter Verwendung des Workflows des Aptima Probentransferröhrchens zur Vorbereitung von Patientenproben wurde im Vergleich zum Workflow des Probenlyseröhrchens beurteilt, wobei die Testung mit dem Aptima und Panther Fusion SARS-CoV-2-Assay erfolgte. Für die Studie wurden drei Verdünnungen von 15 einzigartigen SARS-CoV-2-positiven, nasopharyngealen Abstrichproben unter Verwendung beider Workflows vorbereitet und bearbeitet. SARS-CoV-2-Proben wurden im Vorfeld unter Verwendung eines molekularen Assay eines anderen Herstellers als Hologic als positiv ermittelt.

Die positive prozentuale Übereinstimmung zwischen dem Aptima SARS-CoV-2 Assay unter Verwendung der Workflows des Aptima Probentransferröhrchens und des Probenlysenröhrchens lag jeweils bei 97,5 % (87,1 % - 99,6 %) und 100 % (91,0 % - 100 %) im Vergleich zum Panther Fusion SARS-CoV-2 Assay unter Verwendung des Workflows des Probenlyseröhrchens als Referenz. Die positive prozentuale Übereinstimmung des Workflows des Aptima Probentransferröhrchens lag bei 95,0 % (83,5 % - 98,6 %) im Vergleich zum Workflow des Probenlyseröhrchens als Referenz.

Klinische Leistungsdaten für Speichelproben

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assays mit Speichelproben wurden im Vergleich zu NP-Abstrichproben von 303 Patienten beurteilt, die gleichzeitig getestet wurden. Zu den 303 Patienten zählten 160 (52,8 %) Patienten mit leichten Symptomen und 143 (47,2 %) Patienten ohne Symptome zum Testzeitpunkt. Die positive prozentuale Übereinstimmung (Positive Percent Agreement, PPA) und negative prozentuale Übereinstimmung (NPA) für Speichelproben wurde im Verhältnis zu NP-Abstrichproben als das Referenzergebnis berechnet, wie in Tabelle 9 dargestellt. Der Aptima SARS-CoV-2 Assay zeigte positive und negative Übereinstimmungen von jeweils 87,0 % und 99,2 % zwischen den Patientenprobentypen.

Tabelle 9: Klinische Übereinstimmung des Aptima SARS-CoV-2 zwischen Speichel und NP-Abstrichproben

		NP-Abstrich	
		Positiv	Negativ
Spaighal	Positiv	47	2
Speichel	Negativ	7	245

Hinweis: Bei 2 Patientenproben waren die Ergebnisse ungültig.

Positive prozentuale Übereinstimmung: (95 % KI): 87,0 % (83,0 % - 96,0 %) Negative prozentuale Übereinstimmung: (95 % KI): 99,2 % (97,1 % - 99,9 %)

Klinische Leistungsdaten für asymptomatische Personen

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assays bei Personen ohne Anzeichen und Symptome einer Atemwegsinfektion (asymptomatische Personen) wurden im Vergleich zu einem molekularen Assay mit EUA beurteilt. Es wurden prospektiv entnommene nasopharyngeale Abstrichproben von amerikanischen Patienten unter Verwendung des EUA-Vergleichsassays untersucht, einschließlich 45 Patientenproben, die positiv für SARS-CoV-2 waren, und 315 Patientenproben, die negativ für SARS-CoV-2 waren. Die PPA und NPA wurden im Verhältnis zu den Ergebnissen des EUA-Vergleichsassays berechnet. Die PPA und NPA betrugen für den Aptima SARS-CoV-2 Assay bei asymptomatischen Patienten jeweils 100 % und 96,5 %, wie in Tabelle 10 dargestellt.

Tabelle 10: Klinische Übereinstimmung für NP-Abstrichproben von asymptomatischen Personen

		EUA-Assay	
		Positiv	Negativ
Aptima SARS-CoV-2 Assay	Positiv	45	11
	Negativ	0	304

Positive prozentuale Übereinstimmung (PPA): 100 % (92,1 % - 100 %) Negative prozentuale Übereinstimmung (NPA): 96,5 % (93,9 % - 98,0 %)

Sechs (6) der 11 NP-Abstrichproben mit falsch positiven Ergebnissen wurden nach einer erneuten Testung mit dem EUA-Vergleichsassay als positiv bestätigt. Die Ct-Werte dieser 6 Proben variierten zwischen 35,5 und 38,9, was auf eine niedrige Viruslast hinweist.

Klinische Leistungsdaten des Poolens von bis zu 5 Patientenproben vor der Testung

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assay wurden in Pools aus bis zu 5 Patientenproben beurteilt. Für die Studie wurde ein Poolgröße von 5 Patientenproben beurteilt und es waren positive und negative Patientenproben-Pools enthalten. Jeder positive Patientenproben-Pool bestand aus einer positiven Patientenproben, wobei die restlichen Patientenproben negativ waren, und die negativen Patientenproben-Pools bestanden ausschließlich aus negativen Patientenproben. Für die Studie wurden 50 positive und 20 negative Patientenproben-Pools untersucht. Die in der Studie verwendeten positiven Patientenproben deckten den nachweisbaren Bereich des Assays ab und umfassten 20 % schwach positive Patientenproben. Die Patientenproben für die Aufnahme in die klinischen Leistungsdaten der Pooling-Studie wurden auf Grundlage der Ct-Ergebnisse ausgewählt, die mit dem Panther Fusion SARS-CoV-2 Assay gewonnen wurden. Der Panther Fusion SARS-CoV-2 Assay wurde zu diesem Zweck verwendet, da der Panther Fusion SARS-CoV-2 Assay und der Aptima SARS-CoV-2 Assay dieselbe LoD haben, wenn sie mit dem Referenzpanel der FDA beurteilt werden (d. h. 600 NDU/ml). Als schwach positive Patientenproben in der Studie wurden diejenigen mit einem Ct-Wert innerhalb von 1 bis 2 Ct der LoD des Panther Fusion SARS-CoV-2 Assays definiert. Sowohl die gemischten Patientenproben als auch die Patientenproben von Einzelpersonen wurden mit dem Aptima SARS-CoV-2 Assay untersucht.

Die positive prozentuale Übereinstimmung (Positive Percent Agreement, PPA) und die negative prozentuale Übereinstimmung Negative Percent Agreement (NPA) wurden im Verhältnis zum erwarteten Ergebnis (für Einzelpersonen) berechnet, wie in Tabelle 11 dargestellt. Alle untersuchten positiven Patientenproben erreichten ein positives Ergebnis im Pool. Da die kRLU-Werte für den Aptima Assay nicht der Zielkonzentration entsprechen, wurde keine Signal- und In-Silico-Sensitivitätsanalyse durchgeführt.

Tabelle 11: Übereinstimmung der Patientenproben von Einzelpersonen und gemischter Patientenproben mit einer Poolgröße von 5

		Ergebnis für Patientenproben von Einzelpersonen		
		Positiv	Negativ	Gesamt
Ergebnis für Pools aus 5	Positiv	50	0	50
	Negativ	0	20	20
	Gesamt	50	20	70

Gesamtübereinstimmung: 100 % (94,8 % – 100,0 %) Positive Übereinstimmung: 100 % (92,9 % – 100,0 %) Negative Übereinstimmung: 100 % (83,9 % – 100,0 %)

Klinische Leistungsdaten des Poolens von bis zu 5 Proben von asymptomatischen Patienten vor der Testung

Die klinischen Leistungsdaten des Aptima SARS-CoV-2 Assays wurden mit Patientenproben-Pools aus Patientenproben beurteilt, die von asymptomatischen Patienten entnommen wurden. Es wurden Poolgrößen von bis zu 5 Patientenproben mit Proben von positiven und negativen asymptomatischen Patienten beurteilt. Jeder positive Patientenproben-Pool bestand aus einer positiven Patientenproben, wobei die restlichen Patientenproben negativ waren, und die negativen Patientenproben-Pools bestanden ausschließlich aus negativen Patientenproben. Für eine Poolgröße von drei wurden 32 positive und 32 negative Patientenproben-Pools beurteilt.

Für eine Poolgröße von vier wurden 36 positive und 31 negative Patientenproben-Pools beurteilt. Für eine Poolgröße von fünf wurden 36 positive und 30 negative Patientenproben-Pools beurteilt. Die in der Studie verwendeten positiven Patientenproben deckten den nachweisbaren Bereich des Assays ab und jede Poolgröße umfasste 25 % schwach positive Patientenproben. Die in die Studie zu den klinischen Leistungsdaten einbezogenen Patientenproben wurden auf Grundlage der Ct-Ergebnisse ausgewählt, die mit dem Panther Fusion SARS-CoV-2 Assay gewonnen wurden. Der Panther Fusion SARS-CoV-2 Assay wurde zu diesem Zweck verwendet, da der Panther Fusion SARS-CoV-2 Assay und der Aptima SARS-CoV-2 Assay dieselbe LoD haben, wenn sie mit dem Referenzpanel der FDA beurteilt werden (d. h. 600 NDU/ml). Als schwach positive Patientenproben in der Studie wurden diejenigen mit einem Ct-Wert innerhalb von 1 bis 2 Ct der LoD des Panther Fusion SARS-CoV-2 Assays definiert. Sowohl die gemischten Patientenproben als auch die Patientenproben von Einzelpersonen wurden mit dem Aptima SARS-CoV-2 Assay untersucht.

Die positive prozentuale Übereinstimmung (PPA) und die negative prozentuale Übereinstimmung (NPA) wurden im Verhältnis zum erwarteten (einzelnen) Ergebnis für jede beurteilte Poolgröße berechnet, wie in Tabelle 12, Tabelle 13 und Tabelle 14 dargestellt. Bei einer Poolgröße von drei erreichte eine der acht Patientenproben, die mit einer Zielkonzentration bei oder nahe an der LoD beurteilt wurden, ein einzelnes positives Ergebnis, wurde jedoch nicht als Teil eines Patientenproben-Pools nachgewiesen. Bei einer Poolgröße von vier erreichten alle positiven Patientenproben ein positives Ergebnis, wen sie gemischt getestet wurden. Bei einer Poolgröße von fünf erreichten fünf der neun Patientenproben, die mit Zielkonzentrationen bei oder nahe an der LoD beurteilt wurden, ein einzelnes positives Ergebnis, wurden jedoch nicht als Teil eines Patientenproben-Pools nachgewiesen. Da die kRLU-Werte für den Aptima Assay nicht den Zielkonzentrationen entsprechen, wurde keine Signal- und *in-Silico-*Sensitivitätsanalyse durchgeführt.

Tabelle 12: Übereinstimmung der Patientenproben von asymptomatischen Einzelpersonen und gemischter Patientenproben mit einer Poolgröße von 3

		Ergebnis für Patientenproben von Einzelpersonen		
		Positiv	Negativ	Gesamt
Ergebnis für Pools aus 3	Positiv	31	0	31
	Negativ	1	32	33
	Gesamt	32	32	64

Gesamtübereinstimmung: 98,4 % (91,7 % - 99,7 %) Positive Übereinstimmung: 96,9 % (84,3 % - 99,4 %) Negative Übereinstimmung: 100 % (89,3 % - 100 %)

Tabelle 13: Übereinstimmung der Patientenproben von asymptomatischen Einzelpersonen und gemischter Patientenproben mit einer Poolgröße von 4

		Ergebnis für Patientenproben von Einzelpersonen		
		Positiv	Negativ	Gesamt
Ergebnis für	Positiv	36	0	36
Pools aus 4	Negativ	0	31	31
	Gesamt	36	31	67

Gesamtübereinstimmung: 100 % (94,6 % - 100 %)
Positive Übereinstimmung: 100 % (90,4 % - 100 %)
Negative Übereinstimmung: 100 % (89,0 % - 100 %)

Tabelle 14: Übereinstimmung der Patientenproben von asymptomatischen Einzelpersonen und gemischter Patientenproben mit einer Poolgröße von 5

		Ergebnis für Patientenproben von Einzelpersonen		
		Positiv	Negativ	Gesamt
Ergebnis für Pools aus 5	Positiv	31	0	31
	Negativ	5	30	35
	Gesamt	36	30	66

Gesamtübereinstimmung: 92,4 % (83,5 % - 96,7 %) Positive Übereinstimmung: 86,1 % (71,3 % - 93,9 %) Negative Übereinstimmung: 100 % (88,6 % - 100 %)

Bibliographie

- Weltgesundheitsorganisation Q&A on coronaviruses (COVID-19). March 9, 2020. Website der Weltgesundheitsorganisation https:// www.who.int/news-room/q-a-detail/q-a-coronaviruses. Abgerufen am 10. März 2020.
- Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. Abgerufen am 17. Juni 2020.
- Centers for Disease Control and Prevention. Coronavirus Disease 2019-(COVID-19) in the U.S. Aktualisiert am 10. März 2020. Website
 des Centers for Disease Control and Prevention https://www.cdc.gov/coronavirus/2019-ncov/cases-in-us.html. Abgerufen am 10. März
 2020
- Centers for Disease Control and Prevention. Coronavirus Disease 2019 Information for Travel. Letzte Prüfung der Seite am 8. März 2020. Website des Centers for Disease Control and Prevention https://www.cdc.gov/coronavirus/2019-ncov/travelers/index.html. Abgerufen am 10. März 2020.
- Centers for Disease Control and Prevention. Coronavirus Disease 2019-(COVID-19) Situation Summary. Aktualisiert am 9. März 2020.
 Website des Centers for Disease Control and Prevention https://www.cdc.gov/coronavirus/2019-ncov/summary.html. Abgerufen am 10. März 2020.
- 6. **Clinical & Laboratory Standards Institute.** Document M29 Protection of Laboratory Workers from Occupationally Acquired Infections. CLSI-Website https://clsi.org/standards/products/microbiology/documents/m29/. Abgerufen im September 2017.

CE

Hologic BV
Da Vincilaan 5
1930 Zaventem
Belgium

Hologic, Inc. 10210 Genetic Center Drive San Diego, CA 92121 USA

Kundendienst: +1 800 442 9892

customersupport@hologic.com

Technischer Kundendienst: +1 888 484 4747

molecularsupport@hologic.com

Weitere Kontaktinformationen finden Sie unter www.hologic.com.

Hologic, Aptima, Panther und Panther Fusion sind Marken und/oder eingetragene Marken von Hologic, Inc. und/oder seinen Tochterunternehmen in den Vereinigten Staaten und/oder anderen Ländern.

Alle anderen Marken, die möglicherweise in dieser Packungsbeilage erscheinen, gehören dem jeweiligen Eigentümer.

Dieses Produkt kann unter einem oder mehreren US-Patent(en) geschützt sein, die unter www.hologic.com/patents zu finden sind.

©2022 Hologic, Inc. Alle Rechte vorbehalten.

AW-22752-801 Rev. 004 2022-04